Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(31): 8408-8420, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564404

RESUMO

Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.

2.
Nat Commun ; 7: 10882, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947396

RESUMO

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.


Assuntos
Bases de Dados Genéticas , Substâncias Macromoleculares/química , Publicações , Cristalografia por Raios X , Internet , Software
3.
J Mol Biol ; 428(12): 2557-2568, 2016 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-27016204

RESUMO

TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Dimerização , Escherichia coli/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
4.
Am J Hum Genet ; 96(1): 170-7, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25557781

RESUMO

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.


Assuntos
Aneurisma da Aorta Torácica/genética , Metionina Adenosiltransferase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Dissecção Aórtica/genética , Animais , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide , Exoma , Feminino , Ligação Genética , Predisposição Genética para Doença , Variação Genética , Genótipo , Doenças das Valvas Cardíacas/genética , Humanos , Masculino , Metionina Adenosiltransferase/metabolismo , Pessoa de Meia-Idade , Mutação , Linhagem , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem , Peixe-Zebra/genética
5.
ACS Chem Biol ; 7(12): 2046-54, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23009307

RESUMO

Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor that synthesizes cGMP upon NO activation. In synergy with the artificial allosteric effector BAY 41-2272 (a lead compound for drug design in cardiovascular treatment), sGC can also be activated by carbon monoxide (CO), but the structural basis for this synergistic effect are unknown. We recorded in the unusually broad time range from 1 ps to 1 s the dynamics of the interaction of CO binding to full length sGC, to the isolated sGC heme domain ß(1)(200) and to the homologous bacterial NO-sensor from Clostridium botulinum. By identifying all phases of CO binding in this full time range and characterizing how these phases are modified by BAY 41-2272, we show that this activator induces the same structural changes in both proteins. This result demonstrates that the BAY 41-2272 binding site resides in the ß(1)(200) sGC heme domain and is the same in sGC and in the NO-sensor from Clostridium botulinum.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium botulinum/metabolismo , Óxido Nítrico/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Guanilato Ciclase/metabolismo , Ligantes , Dados de Sequência Molecular , Óxido Nítrico/química , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos , Guanilil Ciclase Solúvel
6.
Arch Biochem Biophys ; 507(1): 14-25, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20654573

RESUMO

A combined theoretical and experimental study highlights the reaction mechanism of allene oxide synthase (AOS) and its possible link to hydroperoxide lyase (HPL) pathway. A previously published study (Lee et al., Nature 455 (2008) 363) has shown that the F137 residue is of central importance in differentiating between the AOS and HPL pathways after initial identical steps. In the experimental part of this study, we show that wild-type AOS from Arabidopsis or rice in fact produces both AOS and HPL products in a ratio of about 80:15, something that was found only in trace amounts before. Theoretical calculations successfully map the whole AOS pathway with 13(S)-hydroperoxy linolenic and linoleic acid as substrates. Subsequent calculations investigated the effects of in silico F137L mutation at the suggested diverging point of the two pathways. The results show that QM/MM calculations can reasonably reproduce three out of four experimentally available cases, and confirm that the pathways are energetically very close to each other, thus making a switch from one path to other plausible under different circumstances.


Assuntos
Arabidopsis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Ácidos Linoleicos/metabolismo , Oryza/enzimologia , Aldeído Liases/metabolismo , Alcadienos/metabolismo , Arabidopsis/química , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Compostos de Epóxi/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Ácidos Linoleicos/química , Modelos Moleculares , Mutação , Oryza/química , Oryza/genética , Óxidos/metabolismo , Teoria Quântica
7.
Am J Hum Genet ; 84(5): 617-27, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19409525

RESUMO

The vascular smooth muscle cell (SMC)-specific isoform of alpha-actin (ACTA2) is a major component of the contractile apparatus in SMCs located throughout the arterial system. Heterozygous ACTA2 mutations cause familial thoracic aortic aneurysms and dissections (TAAD), but only half of mutation carriers have aortic disease. Linkage analysis and association studies of individuals in 20 families with ACTA2 mutations indicate that mutation carriers can have a diversity of vascular diseases, including premature onset of coronary artery disease (CAD) and premature ischemic strokes (including Moyamoya disease [MMD]), as well as previously defined TAAD. Sequencing of DNA from patients with nonfamilial TAAD and from premature-onset CAD patients independently identified ACTA2 mutations in these patients and premature onset strokes in family members with ACTA2 mutations. Vascular pathology and analysis of explanted SMCs and myofibroblasts from patients harboring ACTA2 suggested that increased proliferation of SMCs contributed to occlusive diseases. These results indicate that heterozygous ACTA2 mutations predispose patients to a variety of diffuse and diverse vascular diseases, including TAAD, premature CAD, ischemic strokes, and MMD. These data demonstrate that diffuse vascular diseases resulting from either occluded or enlarged arteries can be caused by mutations in a single gene and have direct implications for clinical management and research on familial vascular diseases.


Assuntos
Actinas/genética , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Doença da Artéria Coronariana/genética , Doença de Moyamoya/genética , Acidente Vascular Cerebral/genética , Actinas/metabolismo , Adolescente , Adulto , Dissecção Aórtica/patologia , Aneurisma da Aorta Torácica/patologia , Proliferação de Células , Células Cultivadas , Doença da Artéria Coronariana/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Doença de Moyamoya/patologia , Mutação , Miócitos de Músculo Liso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Adulto Jovem
8.
Nature ; 455(7211): 363-8, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18716621

RESUMO

The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic pi-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.


Assuntos
Evolução Molecular , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Catálise , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/genética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual/genética , Conformação Proteica
9.
Folia Biol (Praha) ; 53(6): 194-201, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18070416

RESUMO

Based on Internet search, we were contacted by a 50-year-old man suffering from severe abdominal pain. Acute hepatic porphyria was considered from positive Watson-Schwartz test. He, not being a health professional, searched for centres with ability to do molecular diagnosis and for information about therapeutic possibilities. He asked his physician for haem-arginate (Normosang, Orphan Europe, Paris) treatment, arranged sending his blood to our laboratory and mediated genetic counselling for him and his family. Molecular analyses of the PBGD gene revealed a novel mutation in exon 15, the 973insG. Subsequently, genetic analysis was performed in 18 members of the proband's extensive family. In 12 members of the family, the same mutation was found. The mutation, which consisted of one nucleotide insertion, resulted in addition of four different amino acids leading to a protein that is prematurely truncated by the stop codon. The effect of this mutation was investigated by expression of the wildtype and mutated PBGD in a prokaryotic expression system. The mutation resulted in instability of the protein and loss of enzymatic function. The increasing access to a number of disease- and symptom-oriented web pages presents a new and unusual venue for gaining knowledge and enabling self-diagnosis and self-help. It is, therefore, important that diseaseoriented Internet pages for public use should be designed with clarity and accurate current knowledge based background.


Assuntos
Hidroximetilbilano Sintase/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Porfiria Aguda Intermitente/enzimologia , Porfiria Aguda Intermitente/genética , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Eletroforese em Gel de Poliacrilamida , Família , Feminino , Heme/metabolismo , Humanos , Hidroximetilbilano Sintase/química , Índia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão
10.
Nat Genet ; 39(12): 1488-93, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994018

RESUMO

The major function of vascular smooth muscle cells (SMCs) is contraction to regulate blood pressure and flow. SMC contractile force requires cyclic interactions between SMC alpha-actin (encoded by ACTA2) and the beta-myosin heavy chain (encoded by MYH11). Here we show that missense mutations in ACTA2 are responsible for 14% of inherited ascending thoracic aortic aneurysms and dissections (TAAD). Structural analyses and immunofluorescence of actin filaments in SMCs derived from individuals heterozygous for ACTA2 mutations illustrate that these mutations interfere with actin filament assembly and are predicted to decrease SMC contraction. Aortic tissues from affected individuals showed aortic medial degeneration, focal areas of medial SMC hyperplasia and disarray, and stenotic arteries in the vasa vasorum due to medial SMC proliferation. These data, along with the previously reported MYH11 mutations causing familial TAAD, indicate the importance of SMC contraction in maintaining the structural integrity of the ascending aorta.


Assuntos
Actinas/genética , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Mutação de Sentido Incorreto , Aorta/metabolismo , Aorta/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Linhagem
11.
Hum Mol Genet ; 16(20): 2453-62, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17666408

RESUMO

Non-syndromic thoracic aortic aneurysms and dissections (TAADs) are inherited in an autosomal dominant manner in approximately 20% of cases. Familial TAAD is genetically heterogeneous and four loci have been mapped for this disease to date, including a locus at 16p for TAAD associated with patent ductus arteriosus (PDA). The defective gene at the 16p locus has recently been identified as the smooth muscle cell (SMC)-specific myosin heavy chain gene (MYH11). On sequencing MYH11 in 93 families with TAAD alone and three families with TAAD/PDA, we identified novel mutations in two families with TAAD/PDA, but none in families with TAAD alone. Histopathological analysis of aortic sections from two individuals with MYH11 mutations revealed SMC disarray and focal hyperplasia of SMCs in the aortic media. SMC hyperplasia leading to significant lumen narrowing in some of the vessels of the adventitia was also observed. Insulin-like growth factor-1 (IGF-1) was upregulated in mutant aortas as well as explanted SMCs, but no increase in transforming growth factor-beta expression or downstream targets was observed. Enhanced expression of angiotensin-converting enzyme and markers of Angiotensin II (Ang II) vascular inflammation (macrophage inflammatory protein-1alpha and beta) were also found. These data suggest that MYH11 mutations are likely to be specific to the phenotype of TAAD/PDA and result in a distinct aortic and occlusive vascular pathology potentially driven by IGF-1 and Ang II.


Assuntos
Angiotensina II/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Mutação , Cadeias Pesadas de Miosina/genética , Doenças Vasculares/genética , Adulto , Sequência de Aminoácidos , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Pré-Escolar , Permeabilidade do Canal Arterial/complicações , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/patologia , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Doenças Vasculares/patologia
12.
J Inorg Biochem ; 100(12): 2024-33, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17084900

RESUMO

Genome sequencing has recently shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles of these proteins remain unclear. The interactions of a series of l-arginine (l-arg) analogs and iron ligands with two recombinant NOS-like proteins from Staphylococcus aureus (saNOS) and Bacillus anthracis (baNOS) have been studied by UV-visible spectroscopy. SaNOS and baNOS in their ferric native state, as well as their complexes with l-arg analogs and with various ligands, exhibit spectral characteristics highly similar to the corresponding complexes of heme-thiolate proteins such as cytochromes P450 and NOSs. However, saNOS greatly differs from baNOS at the level of three main properties: (i) native saNOS mainly exists under an hexacoordinated low-spin ferric state whereas native baNOS is mainly high-spin, (ii) the addition of tetrahydrobiopterin (H4B) or H4B analogs leads to an increase of the affinity of l-arg for saNOS but not for baNOS, and (iii) saNOS Fe(II), contrary to baNOS, binds relatively bulky ligands such as nitrosoalkanes and tert-butylisocyanide. Thus, saNOS exhibits properties very similar to those of the oxygenase domain of inducible NOS (iNOS(oxy)) not containing H4B, as expected for a NOSoxy-like protein that does not contain H4B. By contrast, the properties of baNOS which look like those of H4B-containing iNOS(oxy) are unexpected for a NOS-like protein not containing H4B. The origin of these surprising properties of baNOS remains to be determined.


Assuntos
Arginina/metabolismo , Bacillus anthracis/enzimologia , Ferro/metabolismo , Óxido Nítrico Sintase/metabolismo , Staphylococcus aureus/enzimologia , Ligantes , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
13.
Nitric Oxide ; 15(4): 312-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16690332

RESUMO

Some Gram-positive bacterial pathogens harbor a gene that encodes a protein (HNS, Heme domain of NO Synthase-like proteins) with striking sequence identity to the oxygenase domain of mammalian NO synthases (NOS). However, they lack the N-terminal and the Zn-cysteine motif participating to the stability of an active dimer in the mammalian isoforms. The unique properties of HNS make it an excellent model system for probing how the heme environment tunes NO dynamics and for comparing it to the endothelial NO synthase heme domain (eNOS(HD)) using ultrafast transient spectroscopy. NO rebinding in HNS from Staphylococcus aureus (SA-HNS) is faster than that measured for either Bacillus anthracis (BA-HNS) or for eNOS(HD) in both oxidized and reduced forms in the presence of arginine. To test whether these distinct rates arise from different energy barriers for NO recombination, we measured rebinding kinetics at several temperatures. Our data are consistent with different barriers for NO recombination in SA-HNS and BA-HNS and the presence of a second NO-binding site. The hypothesis that an additional NO-binding cavity is present in BA-HNS is also consistent with the effect of the NO concentration on its rebinding. The lack of the effect of NO concentration on the geminate rebinding in SA-HNS could be due to an isolated second site. We confirm the existence of a second NO site in the oxygenase domain of the reduced eNOS as previously hypothesized [A. Slama-Schwok, M. Négrerie, V. Berka, J.C. Lambry, A.L. Tsai, M.H. Vos, J.L. Martin, Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin? J. Biol. Chem. 277 (2002) 7581-7586]. This site requires the presence of arginine and BH(4); and we propose that NO dynamic and escape from eNOS is regulated by the active site H-bonding network connecting between the heme, the substrate, and cofactor.


Assuntos
Bacillus anthracis/enzimologia , Heme/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/enzimologia , Óxido Nítrico Sintase/isolamento & purificação , Ligação Proteica
14.
Physiol Res ; 55 Suppl 2: S145-154, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17298218

RESUMO

The porphyrias are group of mostly inherited disorders in which a specific spectrum of accumulated and excreted porphyrins and heme precursors are associated with characteristic clinical features. There are eight enzymes involved in the heme synthesis and defects in seven of them cause porphyria. Four of them are described as acute hepatic porphyrias, which share possible precipitation of acute attacks with symptoms engaging the nervous system. Acute intermittent porphyria (AIP), caused by partial deficiency of the porphobilinogen deaminase (PBGD), is the most frequent among hepatic porphyrias. Clinical expression is highly variable and ~ 90 % of AIP heterozygotes remain asymptomatic throughout life. During systematic genetic analysis of the AIP patients diagnosed in the Czech and Slovak Republics, we found a special case of AIP. In a 15-year-old boy with abdominal and subsequent neurological symptomatology, we identified de novo mutation 966insA within the PBGD gene leading to a stop codon after 36 completely different amino acids compared to the wt-sequence. To establish the effects of this mutation on the protein structure, we expressed mutant constructs with described mutation in E. coli and analyzed their biochemical and enzymatic properties. Moreover, computer-assisted protein structure prediction was performed.


Assuntos
Hidroximetilbilano Sintase/genética , Mutação , Porfiria Aguda Intermitente/genética , Adolescente , Sequência de Bases , Análise Mutacional de DNA , Escherichia coli/metabolismo , Humanos , Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/isolamento & purificação , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Porfiria Aguda Intermitente/diagnóstico , Porfiria Aguda Intermitente/enzimologia , População Branca
15.
Proc Natl Acad Sci U S A ; 102(40): 14232-7, 2005 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16176984

RESUMO

Hereditary coproporphyria is an autosomal dominant disorder resulting from the half-normal activity of coproporphyrinogen oxidase (CPO), a mitochondrial enzyme catalyzing the antepenultimate step in heme biosynthesis. The mechanism by which CPO catalyzes oxidative decarboxylation, in an extraordinary metal- and cofactor-independent manner, is poorly understood. Here, we report the crystal structure of human CPO at 1.58-A resolution. The structure reveals a previously uncharacterized tertiary topology comprising an unusually flat seven-stranded beta-sheet sandwiched by alpha-helices. In the biologically active dimer (K(D) = 5 x 10(-7) M), one monomer rotates relative to the second by approximately 40 degrees to create an intersubunit interface in close proximity to two independent enzymatic sites. The unexpected finding of citrate at the active site allows us to assign Ser-244, His-258, Asn-260, Arg-262, Asp-282, and Arg-332 as residues mediating substrate recognition and decarboxylation. We favor a mechanism in which oxygen serves as the immediate electron acceptor, and a substrate radical or a carbanion with substantial radical character participates in catalysis. Although several mutations in the CPO gene have been described, the molecular basis for how these alterations diminish enzyme activity is unknown. We show that deletion of residues (392-418) encoded by exon six disrupts dimerization. Conversely, harderoporphyria-causing K404E mutation precludes a type I beta-turn from retaining the substrate for the second decarboxylation cycle. Together, these findings resolve several questions regarding CPO catalysis and provide insights into hereditary coproporphyria.


Assuntos
Coproporfiria Hereditária/genética , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/genética , Modelos Moleculares , Sequência de Aminoácidos , Ácido Cítrico/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Cristalografia , Dimerização , Humanos , Dados de Sequência Molecular , Mutação/genética , Conformação Proteica , Alinhamento de Sequência , Ultracentrifugação
16.
Circulation ; 112(4): 513-20, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16027248

RESUMO

BACKGROUND: A genetic predisposition for progressive enlargement of thoracic aortic aneurysms leading to type A dissection (TAAD) is inherited in an autosomal-dominant manner in up to 19% of patients, and a number of chromosomal loci have been identified for the condition. Having mapped a TAAD locus to 3p24-25, we sequenced the gene for transforming growth factor-beta receptor type II (TGFBR2) to determine whether mutations in this gene resulted in familial TAAD. METHODS AND RESULTS: We sequenced all 8 coding exons of TGFBR2 by using genomic DNA from 80 unrelated familial TAAD cases. We found TGFBR2 mutations in 4 unrelated families with familial TAAD who did not have Marfan syndrome. Affected family members also had descending aortic disease and aneurysms of other arteries. Strikingly, all 4 mutations affected an arginine residue at position 460 in the intracellular domain, suggesting a mutation "hot spot" for familial TAAD. Despite identical mutations in the families, assessment of linked polymorphisms suggested that these families were not distantly related. Structural analysis of the TGFBR2 serine/threonine kinase domain revealed that R460 is strategically located within a highly conserved region of this domain and that the amino acid substitutions resulting from these mutations will interfere with the receptor's ability to transduce signals. CONCLUSIONS: Germline TGFBR2 mutations are responsible for the inherited predisposition to familial TAAD in 5% of these cases. Our results have broad implications for understanding the role of TGF-beta signaling in the pathophysiology of TAAD.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Mutação , Receptores de Fatores de Crescimento Transformadores beta/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/química , Transdução de Sinais
17.
Science ; 306(5701): 1550-3, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15472039

RESUMO

Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Clostridium botulinum/química , Clostridium botulinum/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Aerobiose , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Evolução Biológica , Proteínas de Transporte/genética , Quimiotaxia , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , Clostridium botulinum/genética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Guanilato Ciclase , Heme/química , Heme/metabolismo , Hemeproteínas/genética , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Protoporfirinas/análise , Protoporfirinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Guanilil Ciclase Solúvel , Eletricidade Estática , Thermoanaerobacter/química
18.
J Biol Chem ; 279(19): 20186-93, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-14982921

RESUMO

PAS domains, which have been identified in over 1100 proteins from all three kingdoms of life, convert various input stimuli into signals that propagate to downstream components by modifying protein-protein interactions. One such protein is the Escherichia coli redox sensor, Ec DOS, a phosphodiesterase that degrades cyclic adenosine monophosphate in a redox-dependent manner. Here we report the crystal structures of the heme PAS domain of Ec DOS in both inactive Fe(3+) and active Fe(2+) forms at 1.32 and 1.9 A resolution, respectively. The protein folds into a characteristic PAS domain structure and forms a homodimer. In the Fe(3+) form, the heme iron is ligated to a His-77 side chain and a water molecule. Heme iron reduction is accompanied by heme-ligand switching from the water molecule to a side chain of Met-95 from the FG loop. Concomitantly, the flexible FG loop is significantly rigidified, along with a change in the hydrogen bonding pattern and rotation of subunits relative to each other. The present data led us to propose a novel redox-regulated molecular switch in which local heme-ligand switching may trigger a global "scissor-type" subunit movement that facilitates catalytic control.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Oxirredução , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , AMP Cíclico/metabolismo , Dimerização , Escherichia coli/metabolismo , Heme/química , Ligação de Hidrogênio , Ferro/química , Ligantes , Metionina/química , Modelos Moleculares , Dados de Sequência Molecular , Diester Fosfórico Hidrolases , Dobramento de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
19.
Biochemistry ; 40(45): 13448-55, 2001 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-11695891

RESUMO

Nitric oxide is generated under normal and pathophysiological conditions by three distinct isoforms of nitric oxide synthase (NOS). A small-molecule inhibitor of NOS (3-Br-7-nitroindazole, 7-NIBr) is profoundly neuroprotective in mouse models of stroke and Parkinson's disease. We report the crystal structure of the catalytic heme domain of endothelial NOS complexed with 7-NIBr at 1.65 A resolution. Critical to the binding of 7-NIBr at the substrate site is the adoption by eNOS of an altered conformation, in which a key glutamate residue swings out toward one of the heme propionate groups. Perturbation of the heme propionate ensues and eliminates the cofactor tetrahydrobiopterin-heme interaction. We also present three crystal structures that reveal how alterations at the substrate site facilitate 7-NIBr and structurally dissimilar ligands to occupy the cofactor site.


Assuntos
Biopterinas/análogos & derivados , Inibidores Enzimáticos/química , Indazóis/química , Óxido Nítrico Sintase/química , Nitroarginina/química , Sítios de Ligação , Biopterinas/química , Cristalização , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Modelos Moleculares , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroarginina/farmacologia , Conformação Proteica , Especificidade por Substrato
20.
J Biol Chem ; 276(52): 49133-41, 2001 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11590164

RESUMO

Pathological nitric oxide (NO) generation in sepsis, inflammation, and stroke may be therapeutically controlled by inhibiting NO synthases (NOS). Here we targeted the (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)Bip)-binding site of NOS, which, upon cofactor binding, maximally increases enzyme activity and NO production from substrate l-arginine. The first generation of H(4)Bip-based NOS inhibitors employed a 4-amino pharmacophore of H(4)Bip analogous to antifolates such as methotrexate. We developed a novel series of 4-oxo-pteridine derivatives that were screened for inhibition against neuronal NOS (NOS-I) and a structure-activity relationship was determined. To understand the structural basis for pterin antagonism, selected derivatives were docked into the NOS pterin binding cavity. Using a reduced 4-oxo-pteridine scaffold, derivatives with certain modifications such as electron-rich aromatic phenyl or benzoyl groups at the 5- and 6-positions, were discovered to markedly inhibit NOS-I, possibly due to hydrophobic and electrostatic interactions with Phe(462) and Ser(104), respectively, within the pterin binding pocket. One of the most effective 4-oxo compounds and, for comparisons an active 4-amino derivative, were then co-crystallized with the endothelial NOS (NOS-III) oxygenase domain and this structure solved to confirm the hypothetical binding modes. Collectively, these findings suggest (i) that, unlike the antifolate principle, the 4-amino substituent is not essential for developing pterin-based NOS inhibitors and (ii), provide a steric and electrostatic basis for their rational design.


Assuntos
Biopterinas/análogos & derivados , Biopterinas/química , Biopterinas/metabolismo , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Sítios de Ligação , Cerebelo/enzimologia , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Óxido Nítrico Sintase/antagonistas & inibidores , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...